Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Brain-computer interfaces (BCIs) enable direct communication with the brain, providing valuable information about brain function and enabling novel treatment of brain disorders. Our group has been building {\abssys}, a flexible and ultra-low-power processing architecture for BCIs. HALO can process up to 46Mbps of neural data, a significant increase over the interfacing bandwidth achievable by prior BCIs. HALO can also be programmed to support several applications, unlike most prior BCIs. Key to HALO's effectiveness is a hardware accelerator cluster, where each accelerator operates within its own clock domain. A configurable interconnect connects the accelerators to create data flow pipelines that realize neural signal processing algorithms. We have taped out our design in a 12nm CMOS process. The resulting chip runs at 0.88V, per-accelerator frequencies of 3--180MHz, and consumes at most 5.0mW for each signal processing pipeline. Evaluations using electrophysiological data collected from a non-human primate confirm HALO's flexibility and superior performance per watt.more » « less
- 
            The challenges encountered in computational analysis of wind turbines and turbomachinery include turbulent rotational flows, complex geometries, moving boundaries and interfaces, such as the rotor motion, and the fluid-structure interaction (FSI), such as the FSI between the wind turbine blade and the air. The Arbitrary Lagrangian-Eulerian (ALE) and Space-Time (ST) Variational Multiscale (VMS) methods and isogeometric discretization have been effective in addressing these challenges. The ALE-VMS and ST-VMS serve as core computational methods. They are supplemented with special methods like the Slip Interface (SI) method and ST Isogeometric Analysis with NURBS basis functions in time. We describe the core and special methods and present, as examples of challenging computations performed, computational analysis of horizontaland vertical-axis wind turbines and flow-driven This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.string dynamics in pumps.more » « less
- 
            Abstract The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We illustrate the advantages of the OPTIMADE API through worked examples on each of the public materials databases that support the full API specification.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available